Днк на нтв от 27.08.2020 смотреть онлайн сегодняшний выпуск

Можно ли повлиять на результат

Даже теоретически подделать результаты ДНК анализа очень и очень не просто. Если допустить, что кому-то удалось подкупить сотрудника лаборатории, то совершить такую подмену можно только в сговоре со всему участниками исследования – вся процедура анализа фиксирует документально и на фото, и проходит под надзором уполномоченного лица.

Если, всё-таки возникли подозрения в недостоверности результатов анализа, всегда можно потребовать повторное исследование в той же или в другой лаборатории. В том случае, если подмена результатов будет подтверждена, виновники таковой не только понесут уголовную ответственность, но и должны будут компенсировать все сопутствующие проверке затраты.

По самому невероятному сценарию, учёнными Израиля тестируется методика синтеза искусственной цепочки ДНК, но это еще не готовая и очень дорогая технология. И для её применения необходимо иметь доступ к банку всех исследованных генов, чего нет у обычного медицинского учреждения.

В связи с этим, и по причине высокой точности результатов исследования ДНК, тестирование является единственным способом доказать отцовство, или его отсутствие в суде. На данный момент государство не предоставляет бесплатную возможность провести анализ на отцовство, но в тех случаях, когда в ходе судебных разбирательств суд сам принял решение о необходимости проведения исследования, его оплата входит в судебные издержки и покрывается из областного бюджета.

Репликация (редупликация) ДНК

Репликация ДНК — процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным.

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3′-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3′-конца к 5′-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3’–5′ синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей. На цепи 5’–3′ — прерывисто, фрагментами (фрагменты Оказаки), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).

Купить проверочные работы по биологии

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон.

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Что нужно для анализа ДНК?

Анализ ДНК стал популярным не только в медицине, но и в криминалистике, позволяя доказать участие подозреваемого в преступлении. Сегодня же все чаще такое исследование упоминают на скандальных ток-шоу, где выясняют отцовство. Сравнение ДНК ребенка и его потенциального родителя практически на 100% дает ответ о возможном родстве. При этом для анализа не требуется сложный забор биоматериала. ДНК содержится практически во всех живых клетках: в слюне, крови, сперме, эпителии, ушной сере. Но чтобы получить достоверный результат, лучше сдавать для анализа кровь из вены непосредственно в лаборатории. Сам анализ проводится в несколько этапов и требует применения технологичного оборудования и специальных реактивов. Именно поэтому тест на ДНК проводят в крупных клиниках в больших городах, а вот забор биоматериала (кусочек ногтя, ватная палочка в пробирке, следы слюны) можно осуществить на месте, а потом отправить почтой. И хотя такой тест и не будет иметь юридической силы, результат окажется довольно точным.

В ходе чтения молекулы ее сперва выделяют, потом многократно копируют и нарезают на кусочки для анализа. Азотистые основания подкрашивают специальным светящимся красителем, который распознается при лазерном просвечивании. Методов анализа ДНК разработано уже несколько, они постоянно улучшаются за счет модернизации приборов и улучшения компьютерных программ. Это позволяет постепенно снижать стоимость такого анализа.

Наша ДНК – настоящий кладезь информации и, возможно, та самая волшебная палочка, которая позволит в будущем нам как минимум бороться с наследственными заболеваниями и, как максимум, модернизировать свое тело. И если бессмертие – спорный вопрос, которому природа противится, то в продлении нашей жизни и улучшении ее качества изучение ДНК может помочь.

Нуклеиновые кислоты – полимерные молекулы

Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:

  • пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
  • фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
  • азотистого основания.

Строение нуклеотида

Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua). Каждое из них содержится как в ДНК, так и в РНК. Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).

Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.

Строение пурина и пуриновых азотистых основанийСтроение пиримидина и пиримидиновых азотистых оснований

Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.

В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:

  • 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
  • 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).

Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.

Отчетность по РСБУ

Российские компании обязаны отчитываться по унифицированным формам, утвержденным Приказом Минфина № 66н. Состав бухгалтерской (финансовой) отчетности:

  1. Обязательная форма «Бухгалтерский баланс».
  2. Отчеты и финрезультаты деятельности, движения капитала и денежных средств.
  3. Унифицированные приложения к бухгалтерским формам отчетности.
  4. Пояснительные записки.
  5. Аудиторские заключения (для организаций, которым установлен обязательный аудиторский контроль).

Пользователей такой БО делят на внешних и внутренних. К внешним относят кредиторов, поставщиков, подрядчиков, контролирующие госорганы (ФНС, Росстат). К внутренним — руководство компании, учредителей, акционеров, собственников.

Доказанные ДНК различия национальностей

Несмотря на постоянные споры о правильных терминах и допустимости применения понятий расы и этнических групп к генетическим исследованиям, сама генетика всё ещё нуждается в какой-то структуре разделения людей на представителей разных гаплогрупп.

В частности такая структура необходима для проведения клинических испытаний лекарств. Это связанно с тем, что у генов с первого взгляда одинаковых могут различаться аллели.

На деле эти различия выражаются в разной степени естественной активности иммунитета, его готовности к отражению различных заболеваний только силами организма. И бывали случаи, когда человек мог пережить в лихорадке заболевания считающиеся смертельными. При этом вся помощь, которую мог ему предложить лекарь это остужать лихорадящее тело больного.

Так же в список возможных физиологических эффектов от разных аллельных вариантов входят:

  •  Разный лекарственный метаболизм. Усвояемость лекарственных средств, скорость привыкания к ним, или аллергическая реакция отторжения.
  •  Реакции организма на условия окружающей среды и те генетические особенности, которые она сформировала.

Роли РНК в клетке

Рибонуклетновые кислоты подобны ДНК, но имеет несколько основных химических различий.

  • Она содержит дисахарид рибозу, связанный с гидроксильной группой (в ДНК гидроксильную группу заменяет атом водорода);
  • В молекуле РНК используется урацил вместо тимина. Урацил имеет сходную с тимином структуру, за исключением того, что один из его углеродов не имеет метильной группы (- CH3 ).
  • РНК производится путём транскрипции с участка ДНК, не образует двойной спирали, но содержит короткие участки со спаренными основаниями. Это приводит к тому, что при двумерном изображении она напоминает шпильки и петли, форму кленового листа (у тРНК).

Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез получил название матричного, так как молекула ДНК является матрицей (т. е. образцом, моделью) для синтеза молекул РНК.

Роль РНК в клетке разнообразна:

  • она несёт информацию в виде матричной, или информационной РНК (мРНК, или иРНК). Матричные РНК наиболее разнообразны по структуре и размерам. Одна молекула содержит информацию об одном белке. В ходе синтеза белка на рибосомах она служит матрицей, поэтому биосинтез белка относится к матричным процессам. Содержание иРНК составляет 3-5% всех РНК клетки;
  • входит в состав рибосомы в форме рибосомальной РНК (рРНК). рРНК составляет 80% всех РНК клетки. В соединении с белками они образуют одномембранные органоиды рибосомы, и участвуют в синтезе белков из аминокислот;
  • переносит аминокислоты в виде трансферной, или транспортной РНК (тРНК) составляет около 15 % всех клеточных РНК. Молекулы тРНК сравнительно небольшие (в среднем состоят из 80 нуклеотидов). Благодаря формированию внутримолекулярных водородных связей молекула тРНК приобретает характерную пространственную структуру, называемую клеверным листом.

В последнее время у РНК были обнаружены ферментативные функции, а отдельная её форма включает регуляцию экспрессии генов.

Строение и функции РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3′-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Состав ДНК

Если говорить о составе ДНК более подробно, то нуклеотиды это базовый структурный элемент, кирпичики из которых состоят обе цепи спирали. Нуклеотиды подразделяются на 4 разновидности: аденин, тимин, гуанин и цитозин. И всего 4 этих нуклеотида осуществляют запись всей наследственной информации и составляют все известные гены.

Закручиваются в спираль обе цепочки генов тоже не просто так. Из всех четырёх различных нуклеотидов находиться напротив друг друга в разных цепочках они могут только двумя парами: аденин-тимин и гуанин-цитозин. В науке эти пары называются комплементарными.

Между парными нуклеотидами возникает крепкая водородная связь. При этом, связь аденином и тимином немного слабее чем между гуанином и цитозином. Но закручиваются цепочки в спираль по иным причинам:

  • Исследования показали, что скручивание помогает сократить длину цепочки генов в 5-6 раз. А во время суперспирализации (такое тоже бывает) длина цепочки может сократиться в целых 30 раз!
  • Помимо того, что пара цепочек генов закручена в спираль, существует и суперспирализация. За это явление отвечают гистоновые белки, которые имеют форму катушек для ниток. Уже закрученная двойная спираль наматывается на эти белки, как нитка. Что не оставляет сомнений в том, что спиральность, как таковая специально служит тому, что бы более компактно упаковать наследственную информацию в клетку.

Чем ДНК отличается от РНК?

По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара.

Но разница в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.

Но в отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом.

Еще одно отличие между ДНК и РНК заключается в их размерах – первая молекула более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин. Но в РНК вместо тимина присутствует его разновидность – урацил.

Эмбриональная хирургия

Исследования ДНК активно применяются в хирургии

В попытке вылечить опасное заболевание крови, китайские ученые создали человеческие эмбрионы в лаборатории. В 2017 году в проекте участвовали клонированные эмбрионы и ткани, взятые у пациента, страдающего бета-талассемией.

Как и многие генетические заболевания, бета-талассемия вызывается сбоем в основаниях ДНК человека. Генетический код человека состоит из четырех оснований — аденина, цитозина, гуанина и тимина (A, C, G и T). Они содержат все руководство по формированию человека и управлению телом.

Ненормальное основание называется точечной мутацией. Его всегда связывали с двумя третями генетических заболеваний. Чтобы найти точечную мутацию для бета-талассемии, ученые просканировали три миллиарда «букв» генетического кода.

Оказалось, что одна из G была не на своем месте. Метод редактирования оснований заменил его на A и вылечил заболевание на уровне ДНК. В будущем система редактирования оснований может дать положительные результаты по другим наследственным заболеваниям.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Использование в медицине

Открытие того из чего состоит молекула ДНК дало толчок к развитию множества новых услуг и направлений экспериментальной медицины. Благодаря новым технологиям, которые стали возможны вследствие исследования генома, сегодня почти любому доступны:

  1.      Диагностика заболеваний на сверхранней стадии. Анализ позволяет выявить инфекцию, даже если заболевание находится в инкубационном периоде, и нет ни каких симптомов.
  2.      Определение отцовства. Так же материнства и прочих родственных связей. При этом различные тесты можно проводить, как с участием потенциальных родителей, так и без них.
  3.      Тестирование на непереносимость пищевых продуктов. Какие вещества хорошо усваиваются организмом, какие плохо или не усваиваются вовсе, что вызывает аллергические реакции – всё это расскажут результаты индивидуального исследования.
  4.      Анализ этнической принадлежности – с какими народами перекрещивались далекие предки, и какие национальности формируют вас сегодня.
  5.      Исследование на наличие наследственных заболеваний, в том числе и спящих, которые передаются через поколение и более.

И это только самые востребованные тесты, имеющие коммерческий интерес и полезные для простого обывателя. Если говорить о перспективах лабораторных научных исследований, то многие учёные-генетики не без энтузиазма готовятся совершить самое великое открытие за всю человеческую историю — победить болезни и саму смерть.

Как и для чего делают ДНК тест?

Так как ДНК содержится в каждой клетке нашего тела, изучая генетический материал – кровь, кожу, волосы, слюну и т.п. – с помощью принципов микробиологии – ученые могут узнать владельца конкретной ДНК. Однако для получения точных результатов специалисты советуют сдать кровь из вены. Сегодня анализ ДНК позволяет определить наследственную предрасположенность к разным заболеваниям, которыми страдали или страдают родственники человека. Одним из таких заболеваний является шизофрения – в своей предыдущей статье я подробно рассказывала о том, почему эту болезнь так сложно лечить и изучать.

Более того, проанализировав ДНК специалисты могут рассказать о том, какие заболевания могут возникнуть у человека в будущем, определить индивидуальную непереносимость лекарств, склонность к наркомании и алкоголизму и многое другое.

ДНК есть у всех живых организмов.

Наиболее распространенным тестом ДНК является метод полимеразной цепной реакции или ПЦР. На сегодняшний день это один из новейших и наиболее точных способов диагностики. Несмотря на то, что этот метод до сих пор считается экспериментальным, он широко и успешно применяется в медицине. Так, большинство тестов на наличие/отсутствие в организме нового коронавируса SARS-CoV-2, которые проводятся во всем мире, являются именно ПЦР-тесты. Метод ПЦР в 1993 году разработал ученый Кэри Муллис, который получил за свое открытие Нобелевскую премию. Суть метода заключается в применении особых ферментов, которые много раз копируют фрагменты ДНК возбудителей болезни (как, например, с коронавирусом) которые можно обнаружить в пробах генетического материала, например в крови. Затем специалисты сверяют полученные фрагменты с базой данной, что позволяет выявить тип возбудителя болезни и его количество в организме.

Так выглядит амплификатор

Однако выявление и определение склонности к заболеваниям не является единственной областью, в которой прибегают к использованию тестов ДНК. Так, появление ДНК-тестов – как в свое время дактилоскопия (метод определения отпечатков пальцев) – изменило криминалистику. Благодаря анализу ДНК следователи имеют возможность собрать генетический материал преступника и поймать его. Но самое популярное использование ДНК-тестов – определение отцовства. Возможно дело в том, что этот анализ позволяет получить практически 100% результат. Недавно мой коллега Николай Хижняк в своей статье подробно рассказал о будущих возможностях исследования ДНК, рекомендую к прочтению.

Подводя черту отмечу, что сегодня загадка кода ДНК еще не раскрыта. Мы стоим в самом начале познания, что же это такое на самом деле? Приоткрыв небольшую щелочку двери мы можем только догадываться о том, какие перспективы в будущем для человека может открыть понимание что такое ДНК и как мы можем использовать эти знания!

Ссылка на основную публикацию
Похожее